Efficient Second-Order Gradient Boosting for Conditional Random Fields

نویسندگان

  • Tianqi Chen
  • Sameer Singh
  • Ben Taskar
  • Carlos Guestrin
چکیده

Conditional random fields (CRFs) are an important class of models for accurate structured prediction, but effective design of the feature functions is a major challenge when applying CRF models to real world data. Gradient boosting, which is used to automatically induce and select feature functions, is a natural candidate solution to the problem. However, it is non-trivial to derive gradient boosting algorithms for CRFs due to the dense Hessian matrices introduced by variable dependencies. Existing approaches thus use only first-order information when optimizing likelihood, and hence face convergence issues. We incorporate second-order information by deriving a Markov Chain mixing rate bound to quantify the dependencies, and introduce a gradient boosting algorithm that iteratively optimizes an adaptive upper bound of the objective function. The resulting algorithm induces and selects features for CRFs via functional space optimization, with provable convergence guarantees. Experimental results on three real world datasets demonstrate that the mixing rate based upper bound is effective for learning CRFs with non-linear potentials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unbiased Conjugate Direction Boosting for Conditional Random Fields

Conditional Random Fields (CRFs) currently receive a lot of attention for labeling sequences. To train CRFs, Dietterich et al. proposed a functional gradient optimization approach: the potential functions are represented as weighted sums of regression trees that are induced using Friedman’s gradient tree boosting method. In this paper, we improve upon this approach in two ways. First, we identi...

متن کامل

Gradient Tree Boosting for Training Conditional Random Fields

Conditional random fields (CRFs) provide a flexible and powerful model for sequence labeling problems. However, existing learning algorithms are slow, particularly in problems with large numbers of potential input features and feature combinations. This paper describes a new algorithm for training CRFs via gradient tree boosting. In tree boosting, the CRF potential functions are represented as ...

متن کامل

Gradient Boosting for Conditional Random Fields

Gradient Boosting for Conditional Random Fields Report Title In this paper, we present a gradient boosting algorithm for tree-shaped conditional random fields (CRF). Conditional random fields are an important class of models for accurate structured prediction, but effective design of the feature functions is a major challenge when applying CRF models to real world data. Gradient boosting, which...

متن کامل

Stratified Gradient Boosting for Fast Training of Conditional Random Fields

Boosting has recently been shown to be a promising approach for training conditional random fields (CRFs) as it allows to efficiently induce conjunctive (even relational) features. The potentials are represented as weighted sums of regression trees that are induced using gradient tree boosting. Its large scale application such as in relational domains, however, suffers from two drawbacks: induc...

متن کامل

Stratified Gradient Boosting for Fast Training of CRFs

Boosting has recently been shown to be a promising approach for training conditional random fields (CRFs) as it allows to efficiently induce conjunctive (even relational) features. The potentials are represented as weighted sums of regression trees that are induced using gradient tree boosting. Its large scale application, however, suffers from two drawbacks: induced trees can spoil previous ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015